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Question 1 (9 Marks) Commence a NEW page. Marks
(a) Given that sin A = 2 and A is acute, find the value of sin 2A4. 2
(b)  Find the exact value of cos 105°. 2
(c) Show that % = cos 2. 2
(d) Solve the equation 2sin®z = 1 + cos 2z for 0 < x < 27. 3
Question 2 (9 Marks) Commence a NEW page. Marks
(a) For what value of k does the equation 3
2+ (k—4)zx+9=0

have real roots?
(b) Solve the equation z* = 4(z% + 3). 3
(c) Write 222 — 3z + 3 in the form A(z — 1)? + B(x — 1) + C. 3
Question 3 (9 Marks) Commence a NEW page. Marks
(a) A monic polynomial of degree 3 has roots —1, 1 and 2. Write the equation of 2

the polynomial in the form

P(z) = az® + bz + cx +d

(b) The polynomial P(z) = pz® + 522 — 3p has (z — 2) as a factor. Find the value 2

of p.
(c) Let f(x) = 23 + 222 + 52 — 4.

i. Show that f(x) has a root between x =0 and = = 1. 2
ii. Taking x = 0.5 as an approximation to this root, use one application of 3

Newton’s method to find a better approximation to the root.
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Question 4 (7 Marks) Commence a NEW page. Marks
(a) Find the Cartesian equation of the point P(t + 1,2t% + 1). 2

(b)  The curves y = (z — 1) and y = (z + 1)? intersect at the point Q.
i. Find the coordinates of Q. 2

ii. Find the acute angle between the tangents to the curves at (), giving your 3
answer to the nearest degree.

Question 5 (10 Marks) Commence a NEW page. Marks
(a) When the polynomial P(z) is divided by (22 — 1), the remainder is x — 4. Find 2
the remainder when P(z) is divided by (x + 1).
(b) i.  Find the equation of the locus of the point P(z,y) which moves such that 3
its distance from A(—3,2) is twice its distance from B(3, —4).
ii. Describe this locus geometrically. 2
(c) One of the roots of 222 + 22 — 152 — 18 = 0 is positive and equal to the product 3

of the other two roots.

Find all the roots of this equation.

Question 6 (9 Marks) Commence a NEW page. Marks
P(2p, p?) and Q(2q,¢?) lie on the parabola x? = 4y.
(a) Derive the equation of the normal to the parabola at P. 2

(b) The chord PQ passes through the point (0, —2). Find the equation of the chord 3
P and show that pg = 2.

(c) The normals at P and (@ intersect at R. Show that R lies on the parabola. 4

End of paper.
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2011 MATHEMATICS (EXTENSION 1) HSC COURSE ASSESSMENT Task 1 SOLUTIONS 5

Suggested Solutions (d) (3 marks)

v’ [1] for 4sin®z = 1, or equivalent.
Question 1 (Fletcher) v [1] for sinz = i\%.

v [1] for all four solutions. If only % and

(a) (2 marks) 3% js written, a maximum of (2 marks)

ded.
v [1] for triangle (or equivalent). are awarde
v

[1] for final answer in exact form.

2sin?z = 1 + cos 2z

5 3 2sin2x:1—|—(1—281n2x)
sin A = 2 4sinx =1

V5 sinzac:l = sinac::lzL
2 V2

m 31 bw I«w

YT

sin2A = 2sin Acos A )
, 2 é B % Question 2 (Rezcallah)
3 3 9 (a) (

1] for (k—4)% —36 > 0.
k—10)(k +2) > 0.

for final answer.

(b) (2 marks)

AN

3 marks)
[

[

1

]

1] for (
v [1] for correct substitution. ]
v

[1] for final answer.

2+ (k-4 +9=0

2 2
cos 105° = cos(60° + 45°) A=(k—4)"—4(9) = (k—4)" - 36

= 60° cos 45° — sin 60° sin 45°
€os €os St St There will be real roots when A > 0:

_(EXL>_ v3 L
27 V2 2 "2 (k—4)*-36>0
_1_\/§<_\f_\/g> (k—4—-6)(k—446)>0

2v/2 4 (k—10)(k+2) >0
Sk>10or k< -2

(¢) (2 marks)

2 2
cos® x—sin® z
v [1] for cos? x+sin?

v [1] for final answer. (b) (3 marks)
v 1] for making the substitution
and transforming into quadratic (or
g equivalent).
1—tan?z 1-— 3057 2
= cos’x X cos” v [1] for 2% = —2,6 (or equivalent).
1+tan2zx 1+ sin2x X cos?x
cosZ x v' [1] for final answer.
_ cos? x — sin? x
 cos?x +sin’z
= cos 2z zt = 4(2% + 3)

2t — 422 —12=0

NORTH SYDNEY BOYS’ HIGH SCHOOL LAST UPDATED AUGUST 25, 2011



6 2011 MATHEMATICS (EXTENSION 1) HSC COURSE ASSESSMENT Task 1 SOLUTIONS

Let m = 2, Apply the sum of pairs of roots,
m?—4m —12=0 aﬁ—l—ﬁ’y—}—a’yzg
a
(m —~6)(m +2) =0 (~1)(1) + =127 + Yoy = ¢
.'.m:_2,6 o= —1
ozl = —2,6
Apply the product of roots,
22 = —2 has no real solutions.
d
afy =——
o =+V6 a
(=DM)(2) = —d
Sod=2

(¢) (3 marks)

v' [1] for each correct value of A, B and C'
and writing it in the form specified.

S P(x) =23 —22% —x +2
Alternatively, expand (22 —1)(z — 2).

20> —3x+3=A(x -1+ Bx—-1)+C (b) (2 marks)
v [1] for applying the factor theorem and

By inspection, A = 2. Let z =1, evaluating P(2).
v’ [1] for final answer.
2-3+3=C
SO0 =2
P(z) = pz® 4 52® — 3p
Letting z = 0,

By the factor theorem,
3=2(-1)+B(-1)+2

3=2-B+2 P(2)=0
—B=-1 S 2%p+5(2%) =3p=0
s B=1 8p+20—3p=0
.’.2$2—3$+352(a¢—1)2+1(x_1)+2 5p+20=0
Sop=—4

i L
Question 3  (Lam) (c) i. (2 marks)

(a) (2 marks) V' [1] for evaluating f(0) and f(1).
v 1

[
V' [-1] for each error. 1] for final statement (or
e

quivalent).
P(z) = az® + bz + cx + d
e As P(z) is monic, .. a = 1. f@)=a®+22" + 52— 4
e The roots are « = —1, 8 = 1 and f(0)=—-4
v =2 f)y=14+2+5-14
e Apply the sum of roots, _y
b .
a+5+’y=—a As f(0) < 0 and f(1) > 0 and f is
41 4+2— b continuous for all z, therefore f(x)

b_ o has a root between £ = 0 and z = 1.

LAST UPDATED AUGUST 25, 2011 NORTH SYDNEY BOYS’ HIGH SCHOOL
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ii. (3 marks)
v' 1] for correct differentiation.

v [2] for final answer. Deduct [1] for
each error.

f(z) =2 +22% + 52 — 4
f'(x) =32 + 42 +5

1 1 1 5! 7
f(§>:§+2<1>+5‘4:‘§

r(z)=2(3)+1(3) =%

2y — 2y — 4F1)
f(@1)
B |
R
= 1—? ~ 0.6129

Note: f(32)~0.04---.
Hence =z = é—? ~ 0.6129 is a better
approximation of the root.

Question 4  (Ireland)
(a) (2 marks)
v’ [1] for substituting ¢ = x — 1 into
y =2t +1.

v [1] for final answer y = 2(z — 1) + 1.

r=t+1 y=2t2+1

Rearrange © = t + 1 and substitute into
y=2t>+1:

.‘.y:2(:c—1)2+1
=20z -2z +1)+1
=22% — 42+ 3

i.

ii.

(2 marks)
v' [1] for each value of z and y.

Equate to solve simultaneously:

{y:(ﬂc—l)2

y=(z+1)
(z+1)2=(z-1)%=0

[(x—f—l)—(x—l)} [(x+1)+(x—1)] ~0

(2)(2z) =0
Sx=0
Sy=0-1)72=1
Q(0,1)
(3 marks)
v' 1] for both values of m; and ma.
v [1] for correct substitution into
tanf = |{—2 ). Max [1] for
error in this formula.
v’ [1] for final answer.
dy
y=@-1? Yoo
dy
y=@+1? Yo

At x = 0, the gradients of the
tangents to the curves are

mi=2(—-1)=-2  my=2(1)=2

Applying the angle between two
lines formula,

mi1 — M2
1+ mi1mso

2-(-2) | |4
m‘ - —_3‘
.0 =53° (nearest degree)

tanf =

NORTH SYDNEY BOYS’ HIGH SCHOOL
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Question 5

(a)

(b)

(Trenwith)

(2 marks)
v’ [1] for rewriting P(x) as the division
identity.

v' [1] for final answer.

Apply the remainder theorem for divison
by = + 1:
(c)

P(=1) =0+ (-1—4)= -5

Hence the remainder when dividing P(x)
by (x +1)is R = —5.

i. (3 marks)
v’ [1] for PA? =4PB2
v

[1] for substituting expression into
PA? =4PB2%

v [1] for 32% — 30z + 27+ 3y + 36y +
60 = 0.

PA=\/(z+3)2+ (y — 2)2
PB=+/(z—3)2+ (y+4)?

PA=2PB
. PA?> =4PB?
S +3)? + (y - 2)°

=4(x — 3)* +4(y +4)°
d(z —3)% +4(y + 4)?
—(@+3)* = (y—2?*=0
4 (2* — 624 9) +4 (y° + 8y + 16)
—(2®+62+9)— (¥ —4y+4) =0
322 — 30z + 27 + 3y* + 36y + 60 =0
322 — 30z + 3y? + 36y + 87 =10

ii. (2 marks)
v’ [1] for circle.
v Q1

] for correct centre and radius.

322 — 30z + 27 + 3y + 36y + 60 =0,
=3

22— 10z + 9 +y* +12y+ 20 = 0
-9 —20 —29

22 — 10z + 25 4+ 32 + 12y + 36
= —29 + 25 + 36
(x—5)*+ (y+6)° = 32

Circle with centre (5, —6) and radius

r=4v/2.

(3 marks)

v' [1] for correctly finding the product of
roots.

v (1] for 2% +7a+6=0.

v [1] for final answers.

223 + 22 — 150 — 18 = 0

Let the roots be «, 8 and «f, where
af > 0. Apply the product of roots,

aﬁxaﬁ:a2ﬁ2:—g:9
saB =3 (5.1)

Hence one of the roots is 3. Rearrange,

3
o= — 5.2
3 (5.2)
Apply the sum of roots,
b 1
=——=—= 5.3
atfraf=—=—2  (53)

Substitute (5.2) into (5.3),

3 1
a+—+3=—c
a 2
N~———  Xx2a
X2

2a2+6+6a:—a

202 +7a+6=0

2a+3)(a+2)=0
3

SLa=—=,—2
2

Hence the roots are —%, -

LAST UPDATED AUGUST 25, 2011
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Question 6

(a)

(Weiss)
(2 marks)

v' [1] for derivation of gradient of normal.

v [1] for final answer, or equivalent in
gradient-intercept form.

P2p,p*)  Q(2¢,4%)
Rearrange 2 = 4y,
1, dy 1
YT e
At x = 2p,
dy 1
— =—X2p=
de 2 p=r
1
my = —-
p

Applying the point gradient formula,

y—p* _ 1
T —2p P
py—p*=—z+2p

sxt+py=p>+2p

(3 marks)

v [1] for correct application of two-point
formula.

v [1] for correct equation of PQ.

v' [1] for correct substitution of (0, —2) into
equation of PQ) and conclusion.

Apply the two point formula to find the
equation of chord PQ):

y—¢¢ p’P—-¢ (—7p+q)

r—2¢ 2p—2¢  2p—7qJ
_pta
2

2 Pty pP+q

S L S IS Y e

s=it= () e (25

_(p+4q
y-o =% )r-pa-

As the chord PQ passes through (0, —2),
—2=0-pq
S.pg =2

(4 marks)

v (1] fory=p*+q¢®>+pg+2.

v (1] for x = —=2(p+q).

v' [1] for use of pg = 2 in y coordinate.

v 1) for correct substitution and
conclusion.

From part (a), the normals at P and @ are

x=—py+p’+2p
x=—qy+q’+2

Solving simultaneously by equating,

—py+p° +2p=—qy+q° +2
py—qy=p"—q’+2p—2g
yp—a)=0"-¢*)+20p—q)
up—1T = [p—TT(0* + pI'+ ¢*) + Ap—77
Sy=p'+F+24+2
=p’+¢* +4
=p*+2pq+ ¢
= (p+9)?

Substitute to find x,

z+pp+q)? =p°+2p
x=—plp+q)?+p°+2p
= —p(p®> +2pq+ ¢*) + > +2p
— A — 2%~ pg® + §F + 2p
= —pq(2p+q) +2p
=—2(2p+q) +2p
= —4p —2q+2p
=-2p—-2¢=-2(p+q)
Check that R with coordinates

r=-2(p+q) and y = (p + ¢)? lies on
the parabola 22 = 4y.

€ 2(p Q)
1

S.p + q=—=T
2

Substitute to y:

y=(p+q)?

.. R lies on the parabola as well.
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